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Abstract

In this paper we investigate the problem of selecting the best logistic population from
k(> 2) possible candidates. The selected population must also be better than a given
control. We employ the empirical Bayes approach and develop a selection procedure.
The performance (rate of convergence) of the proposed selection rule is also analyzed. We
also carry out a simulation study to investigate the rate of convergence of the proposed
empirical Bayes selection procedure. The results of simulation are provided in the paper.
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1 Introduction

-Consider k independent logistic populations II, ..., II; with unknown means 6, ..., f;.
Let 8y < ... < 0 denote the ordered values of the parameters 6y,. .., 0. It is assumed
that the exact pairing between the ordered and the unordered parameters is unknown.
A population II; with 6; = 0 is called the best among the k& underlying populations.
In many pratical situations, we may not only be interested in the selection of the best
population, but also require the selected population to be good enough compared with
a given control. The problem of selecting the best population has been studied by many
researchers. Gupta and Panchapakesan (1996) provided a comprehensive review of the
development in this area. It should be pointed out that the logistic distribution serves as
a statistical model in many practical situations, see, for example, Balakrishnan (1992).
The statistical selection problem for logistic populations has been studied in Gupta and
Han (1991,-1992), among others.

In this paper, we employ the empirical Bayes approach to select the best logistic
population provided it is also as good as a given control. We describe the formulation of
the selection problem and derive a Bayes selection procedure in Section 2. In Section 3,
we construct an empirical Bayes selection procedure. Then we investigate the asymptotic
optimality of the proposed empirical Bayes selection procedure in Section 4. A simulation
study is carried out to investigate the performance of the proposed selection procedure
in Section 5.

2 Formulation of the Selection Problem

Let II;,...,II; be k independent logistic populations with unknown means 6, ..., 6.
Let Oy < ... < O denote the ordered values of the parameters 6y, ..., 0. It is assumed
that the exact pairing between the ordered and the unordered parameters is unknown.
A population m; with 6; = 6, is considered as the best population. For a given control
6o, population 7; is defined to be good if the corresponding 8; > 6y, and bad otherwise.
QOur goal is to select a population which is the best among the k¥ populations and also
good compared with the standard 6. If there is no such treatment, we select none.

Let Q = {8 = (61,...,6k)} be the parameter space. Let a = (ao, . .., ax) be an action,

k

where ¢; = 0,1;2=0,1,...,kand ¥ a; = 1. For each ¢ = 1,...,k,a; = 1 means that
=0

population 7; is selected as the best and also considered to be good compared with 6.

ag = 1 means that all the k& populations are excluded as bad and none is selected. We

consider the loss function




L(Q, &) max 9[;0], 90 Z a,,

=0

It is the absolute error loss.

For each 1 = 1,...,k, let Xi1,...,X;»r be a sample of size M from the logistic
population II; = L(6;, 07) which has unknown mean 6; and unknown variance (n202)/3,
that is, the conditional density distribution of X;; given 6; and aiz is

1 e—(@i—0:)/oi

el te@mamy O SE <o B

Since logistic distribution is symmetric about its mean, the mean and the median of
a logisitc population distribution are identical. For convenience, suppose M is an odd
number, and we denote M = 2s + 1. We also assume that the unknown population
median (and also the mean) 6; has a normal N(u;, 72) prior distribution with unknown
parameters (u;, 77). The random variables 61, . ..,0; are assumed to be mutually inde-
pendent. Define X; to be the median of {Xi,...,Xin}, 2 =1,...,k. Let fz(xz|91,orz)
and h;(0;]u;, 72) be the conditional distributions of X given (0;, o; ) and 6; given (u;, 72),
respectively. We have, fori =1,...,k,

(2s+1)!'1 (e—($i—9i)/0i)8+1

(W2 0; (1 + e~ @—0)/a:)2s+2" —00 < z; < 00. (2)

fi(z:]6;,07) =

From (2) we see that the density function f;(z;]0;,0?) is symmetric about 6; given 6;,
therefore,

The posterior density of §; given X; = z; is proportional to

2
(e‘“(zi-—ﬁi)/a';)s-{—l _(g._:.)
(1+ e—(zi—ei)/di)2s+2 e ) —00 < §; < o0. (4)

Let X=(Xy,...,Xx) and X be the sample space generated by X. A selection pro-
cedure d=(dy, ...,dx) is a mapping defined on the sample space X. For every x € X,
di(x),4=1,...,k, is the probability of selecting population II; as the best among the &
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populations and also good compared with the given control 6, do( ) is the probability
of excluding all k& populatlons as bad and selecting none. Also, 3% , di(x) = 1, for all
XEX. )

Under the absolute error loss, the posterior median is the Bayes estimator of §;. We
denote ¢;(z;) to be the posterior median of §; given X; = z;, 1 =1,...,k.

Under the preceding statistical model, the Bayes risk of the selection procedure d is
denoted by R(d). We have

-~ [ [ (e ) + C, (5)

=0

where
C = fo max(fj, 0)dH (0),
H(8): the joint distribution of § = (6y,...,0k),
filz:) = Jp fi(wils, 0F)hi(0s|pi, ) d6i,
Fx) = IE, fi(z),
wo(z0) = bo.

For each x € X, let I(x) = {ilpi(z:) = 0r£1a<}§c<pj(x1) = 0,1,...,k}, and &= =
B

min{ili € I(x)}. Then a Bayes selection procedure d?(x) = (df(x),...,dg(x)) is given
as follows:

3 The empirical Bayes Framework

The Bayes selection procedure d®(x) defined in Section 2 depends on the unknown
parameters (u;,77), 4 = 1,...,k and the specific form of ¢;(z;). Since the parameters
and the specific form of ¢;(x;) are both unknown, it is impossible to implement the
Bayes selection procedure for the selection problem in practice. In the empirical Bayes
framework, it is generally assumed that there are some past observations when the
present selection is to be made. At time ! = 1,...,n, let X;; be the j-th observation
from II;, that is, for each ¢ = 1,...,k, let




and

Forli=1,...

Then,

and

,n, denote X;; to be the median of (X,

XileL(eil,Uiz), j=1,...,M.

1 n
Xi(n) = ~ ;Xi,z,

(Kot ~ Xi(n))2.

=1

HOE

1
n-1

E(Xi;) = E(BE(X;|02)) = E(6a) = 1,

VCLT(XZ"I)

Tiz + E(VGT(X.;’ZIGH))
0.

AN [ T |

‘e aXiMl)) and

Var(E(X;,|04)) + E(Var(X:|04))
Var(&,—l) -+ E(VG/I‘(X,;J |9,1))

(10)

(11)

(12)

Denote v? = Var(X;,;). Since (Xu,...,Xin) are i.i.d., by the strong law of large
numbers, we know that as n — oo,

{X,-(n) — U, a.s.

S%(n) — V2, a.s.

(13)

To derive the empirical Bayes selection procedure, we first consider the following
lemmas. The following lemma is from Serfling (1980).
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Lemma 3.1 Let {Yi',l <1< m} be m i.i.d. random observations from continuous
distribution function F; also let £ and & be the medians of {Y¥;,1 < ¢ < m} and F,
respectively. Then, for any ¢ > 0,

P{|€ — €] > €} < 2e7¥% (14)

where 0. = min{F({+¢) — 3,1 — F(£ — ¢)}.

Put ¢’ = minlsisk Ji, o = maXi<i<k Oi- Xz’l, v 7X'iM are i.i.d. from L(0,, 0'1;2), which
has the following cumulative distribution function

1
F(tz)=m —OO<ti<OO, (15)
and for 0 < € < o/,
1 1 e/ — 1 €
F(o; —=—==-=-F(0;—¢) = > . 1
ite)—5=5-Flb:i—e 2/ + 1) = 2(e + 1)o* (16)

Given 0;, 6; and X; are the population median and sample median respectively, we
have, from Lemma 3.1,

—(2s+1)e2

P{le - le > 6} < 2ee+pior? (17)

For any 0 < € < ¢/, denote S; = {x € X : |z; — 6;| < €¢}. We show that the

conditional density of X; given §; and o7 is approximately N(6;, ;207) as s — oco.

From (2), the conditional density of X; given 6; and o2 is

(2s+1)11  (e~(@i—i)/oi)s+l
(s1)? o; (1 + e~(@i=0:)/oi)2542
(2s+1)!'1 1
(3!)2 ;1, (2 + e—-(z;—ﬂi)/a'i + e(m;—@;)/o’;)3+1 .

fi(xiwi, 0’?)

By Stirling’s formula, when s is large enough,




(2s+ 1)1 20+

) Vo

Also choosing € = €, | 0 to be a sequence of fixed numbers which tend to 0 as s — o0,
by Taylor’s polynomial expansion, we have

Vs+1. (19)

1(z; — 6;)°
log(2 + e~ @0/ . g(@i=8/0t) x og 4 + Z(x_azg.)__ (20)
on S;. When s — oo, from (17),
—(2s+1)e>
P{X & S;} < 2exe+1)?e*? —3 (. (21)
Therefore, we see that as s — oo,
1 e
fz($1,|97,, 0'12) ~ ——-————————e y (22)
V21 /2/s+ 17
that is, fi(x:(0;,0%) is approximately N(6;, ;207).

From above, we can see that for sufficiently large s, the conditional density of X;;
is approximately N(6;, -3 +1 o2), given 6; and o;. Since the prior distribution of 6; is
N(ui, 72), the unconditional density of X, is approximately N(u;, 77 + 72507).

For each population II;, let W2(n) be the measure of the overall sample variation for
the past observations. That is,

{Xil =4 Z;-\{-l Xijt, (23)
Wi(n) = (M “n ZN{-IZZ 1 (Xijt — X )2
Then we define, forz=1,...,k,
Az = Xi(n))
5 = SWi(n)?,
24
5% = SHn), 9




and

. o 262 o m )
@i(z:) = (z:72 + ?ﬁ#z‘)/viz, if o2 — ;%Uzg >0,
fiy if 92 — 262 <0, )
(,270(.'170) = b.
Then for each x € X, let [(x) = {i|gi(z:) = Orgagi%(x]) i =0,1,...,k}, and

* = min{é|i € [(x)}. We propose the following empirical Bayes selection procedure
d™9)(x) = (d™(x),...,d™) (x)) as follows:

drd =1

’L* 3 26

| d™) =0, for j#i* 9)
3 ) ’

4 Performance of the proposed selection procedure

Consider the empirical Bayes selection procedure d(™*)(x) constructed in Section 3.
Let R(d™%)(x)) be the conditional Bayes risk given the past observations {X,i =
1,...,k;5=1,...,M; and | = 1,...,n} and ER(d™*)(x)) the Bayes risk of the em-
pirical Bayes selection procedure respectively, where E is the expectation taken with
respect to the past observations {X;;}. From (5),

REE(9) = - [ 13 (6 F)d(e) + O (27)

=0

)) > 0. We use the nonnegative difference regret
as a measure of the performance of the selection

Note that R(d™*)(x)) — R(d®(x))
Therefore, E(R(d™(x)) — R(d®(x)
risk E(R(d(" (x)) ~ R(d®(x))) > 0
procedure d™*)(x).

> 0, since dB(x) is the Bayes selection procedure.

We first state some facts about ;(z;), the posterior median of 8; given X; = z; and
;. From the definition of g;(x;), we can see that ¢;(z;) is between z; and u;. Besides,

Lemma 4.1 When s is large enough, for 1 < <k,

i) 2] < 203252 (28)
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Proof. We only prove ¢;(z;) < z; + 204/ lﬂf—’? here. The proof of ¢;(z;) > z; — 20; 1353
is similar. To prove @;(z;) < z; + 204/ l—°§i, it suffices to show that

Ve 10 DO, )0,
— /°° (28 + 1)' 1 1 (e(ﬁi—zi)/a,-)s+1 e~ﬂi;—f‘§f’—2d0.
= zi+20'i\/—°,_;‘z (3!)2 g; vV 27'(7',; (1 + e(ei—zi)/ai)23+2 ;
8 a;0+xr;— 2
_ /w 1 @s+1ﬂ< & )+{e-uﬁﬁ#¢@9—+o (20)
2\/@ \/?27‘:7-1: (3!)2 (1 + 60)2 ’
a8 s — oo. We first show
_ (@2s+1)! ef s+1
t(9,s) == (sh)? ((1 + 39)2) — 0 as § = o0, (30)

uniformly for 6 > 2\/1—°§—3. Obviously it is enough to consider the case of § = 2\/135—8

since £(0, s) is decreasing on # > 0. When 6 = 2\/1—°§—3- and s is large enough, by Taylor’s
formula,

log(1 + %) = log2 + %9 + %92 +0(6%), (31)

and by (19), when s is large enough,

(25 + 1)!

log I

< 2(s +1)log2 + ; log(s + 1) (32)

From (31) and (32), we obtain that

logt(8, s)
!
= (s+1)[f —2log(1 +€%)] +log Qz;_'%—z—)—
s+1, 1 2
< —2(s+1)log2 - 6 +2(s+1)10g2+-2-logs+0(36)
1 1
= _(s—: ———2-)logs+o(logs)—>—oo, (33)

8




as s — 0o. Therefore, (30) is proved, from which we can immediately see that (29) holds
- true. It completes the proof of Lemma 4.1.

The next lemma is well known and can be found in Baum and Katz (1965).

Lemma 4.2 Let X3,..., X, beiid. random variables with mean 0. Suppose for @ > 1,
E|X;|* < o0, for t = 1,...,n, then for any € > 0,

P{IY. Xefn| 2 €} = o(n™@). (34

i=1

As a consequence of Lemma 4.2, we have

Lemma 4.3 Let X;,..., X, be independent random variables, with mean EX; = p and
variance VarX; = o2, fori=1,...,n. Alsolet X = 13" X, and S2 = L ¥(X; — X)*
Suppose for ¢ = 1,...,n and a fixed number & > 2, F|X;|* < co, then for any € > 0,

P{|S5 = 0% > €} = o(n™(*/*D). (35)

The proof of Lemma 4.3 can be found in Gupta and Lin (1997).

Since EX?#, < oo, for any € > 0, by Lemma 4.2,

P{lj; — il 2 €} = o(n3), (36)

also by Lemma 4.3,

P{|5? = 2 > e} = o(n™Y). (37)

Similarly, we have for any € > 0,

P{|6} — of| 2 €} = o(n™"). (38)

When s is large enough, 7 — 2767 > 0. Therefore, from (37) and (38), when s is
sufficiently large,

2 < 0} = o(n"Y). (39)

©o




Besides, 72 = v — E(Var(X;,|6;)) by (12) and

= [T 225+ 1)1 1 (e(mu—ti)/oiys+l
E(Var(X,|0:) = /_oo(ib'il‘ei) (s1)2 ;i(l+e"'(mil"0i)/0'i)2s+2dxil

_ Ui/°° x2(23+1)!(( e® )s+1da:. (40)

oo’ D2 \(1+e2)?

We have

Lemma 4.4

/_o:o z? (ZESBZI)! ((1 jzez)z)s#da: = o(\/@). (41)

/ e (225) 1)1 ((1 fe:y)s:‘f”
= 2/ ST ((I:e“’)) d

3—5‘3‘ (25 +1)! et s+l
= (] 1/——0 e )2 ((1 n e")2> de
= T1 + T2 -+ T3 (42)

Proof.

By Stirling’s formula, when s is large enough,

(23+1)!/ g8 2( e’ )3"'1
T, = 230 % V4
1 G2 b T\Trep) ¥

9. 22(s+1)\/m . 9~2(s+1) /V 85 22dz
0
1 3/2
< Vvs+ 1( —95-—5-)

S

o(\/@). (43)

S

IA

Using the same approach as in the proof of Lemma 4.1, we have

23+1

z s+1
T ¢ ) dz

o e (s

10




Moreover,

_ (25 +1)! °°2< e® )3“

(s1)? 1+ e7)2
!
< 2(2?3";21)-/”3;26—(%1)9;“
! 3
log s
= oY=

This completes the proof of Lemma 4.4.

From Lemma 4.4, we observe that when s is sufficiently large,
B(Var(X,yl09) = o £2),
and therefore, by (37), (39) and the definition of 72, for ¢ > ¢ 1—"%”—, where ¢ > 0,

P{|#} = 7}| 2 €} = o(n™"),

and furthermore,

P{o}/72 <v}/(2m])} = o(n™").

(44)

(46)

(47)

(48)

Next we investigate the rate of convergence of E(R(d™*(x))— R(d®(x))). Let P, be

the probability measure generated by the past observations X;;,i =1,...k;j=1,.

andl=1,...,n.

B(R(™(x)) - R(d°(x))
= L3 [ Puali =¥ = iH(w:) - 03(e) f(x)dx

k
1=0 j=0

11
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k

= 3 [ Paatit =i = 0H(wilar) — 00) F(x)dx

i=1

k ~

+ 30 [ Paoti” =0, = 1100 - 05(a) F(0)dx
T )

AR [ Pl =6 =5} 0le) - (o)) )
k .
< 2 Z /RPn,sUSbi(xi) — @i(z:)| > i(z) — Ool}Hilzi) — Oo| fi(s)dz;

=1k k . x- — . .

+2; 2_;/}22 Pn,s{l(pz(xz) - (Pz(l'z)l > |(P1,( Z) ) <pJ(xJ)l}I(P',,(.’I)z) - (,oj(xj)|

X fi(z:) fi(z5)dzidz;

For any e > 0,and 7,5 = 1,...,k, let

{ff::-—{{<lw§?w_<9;—<—:w}<x>| < (50)
Then we have
L= 23 [ Pudl(e) = eilal > leted = bollie(e) = Bl ()
+2i=i1 [, Prel0:(s) = (] > leu(a:) = ol () — Bl o) da
< 21_2: [, efilz)ds
123 [ Pocllita) - o)l > eHl(z) = olilaads, 1)

By Lemma 4.1, when s is large enough, |¢;(z;) — ;] < 2ai\/1—°§—’l. From now on, we
always set € = 160"/ 1%—3— Therefore, for sufficiently large s,
|z; — 6ol < lpi(zs) — @l + |i(i) — o < 2€ (52)
on A; and

12




Thus,

I

Moreover,

IN

(z:)dz; < i(%)dz;
.&ﬁummz_ Awwgmf@)x

/ L dz

(lzi-bol<2¢} V21T
4e

Vorr

8k
\/5717}'6
+2;/RPn,s{|¢i(xi) — i(z:)] > eM|i(zi) — pal + |ps — Ool) fi(zi)dzs. (54)

k k

25 [, Pralltte) — ota)] > EELZ 2N a) — gz
o 5o (o)

233 [ Pl - e > B @) o)
- X fi(z:) f(z5)dzidz;

k k

2 iz )dzid

GEJ;/X fi(z:) fi(zj)dz;dz;
k k

+QZZ/ P o{1@i(z:) — wi(zs)| > 5 }I‘Pz($1) pi(z;)]
=1 j=1

X fz(:z:z)fj(x])dx,dxj (55)

From (28), when s is large enough, |p;(z;) — ;| < € and |g;(z;) — ;| < €. Therefore,

when s is sufficiently large,

{(zi,25) : loi(:) — 0j(z5)| < €} C {(@0,35) « [@s — 23] < e} (56)

Thus, similar to (53),

13




[, E@)fe)dsds; < = 67)

X 27 min(7;, 7;)

We observe that

2

%> mmmm

+2;; [, Pratlgu(an) = ox(@) > Sl = ] + lis(a) -
+ | - lij”fi(xi)fj(xa)dxzdza- (58)

I

IN

From (54) and (58), it suffices to analyze the limiting behaviors of

Jr Pos{1@i(z:) — pilzi)| > %}fz‘(xi)dxi,
Jr Prs{|@i(z:) — @i(:)] > £Hoi(x:) — pal fi(s) des- (59)

We first analyze [ Py s{|¢i(z:) — @i(x:)| > £} fi(x:)dz;. Denote

= {z; : |pilz:) —

0| < g}
-—{x,.]zz——elg-g-

|2 (60)

By Lemma 4.1, we know that when s is large enough, |p;(z;) — 2;} < §. Therefore, for
sufficiently large s, we have

R-Y;CR-2Z, (61)
and
[ Posllti(s) - eiled] > £}z da

= /R(/ P’”{]% z:) — pilzi)| > }fz($z|9u o7) i(eilﬂi’Tiz)d:IJi)de
+], (/y Frolliled) = pilz)l > §}fi(xi|9ivUiz)hi(eilﬂia"'iz)dil'i)dei

14




fi(z:|6:, 02)h ~(9-|u,-,7’i2)dxi>d0i
[ Pl = 8 2 SHAuaibr, o Ol 7))
fz IBllgz,Gf)diL‘z) i(aillvlliaTiz)dei

IA
—
:U\

R Z,

IN
o T
—\/—\

R z;—0;|>

/ Pns{I‘Pz ;) — 0| > >
Xh (9 Lu“h 1, )de

2—26%/(s+1) > O}fi(xilai,ff?)dxi>

+

(
J,
(
J

> |

R

N TN

/R / Po {97 ~ 2&2/(s+1)<0}f,(:cz|91,02)dxz> o (0| sr 72) 6
2s+le
S /6 128(e+1)20* h(9.|'ui’ z)
b [ ([ Pslilea? + 2250157 - 0 2 S1A(oi 00 o7) ) (O, )
+o(n™1)
< 2e ﬁ%%f
[ ([ Poallz =2 3 G ) el o) (6 7210
N (s+l)ue ) 5
i — 0s i ) hi (0w, 77 ) d;
1 +/R(/RPn,s{Iﬂz 6| > 166 2 }fz($z|9z70’z)d$ (63l Tz)
+o( 1
. < O™
i +/ (/P {|:v 0> 8BS 210 fu(mil6s a-z)dx-)h~(0~|u- 72)d6;
| n,s 2 K3 28 7;_\_1:2._ [ 7 T 2iViy Vg 2 (1 1 1y ‘2 (2
[ ([ PratSs <2/ @ Aol ) s,
(s+1)1/ € .
‘ (L sl -0 2 g 5 2 v oD} il o))
| Xh; (9 |u7-7 z)dgi
|
* - / ( / Pos{97/67 < uf/@af)}fi(xilei,a,?)dxi)h,-(eim,-,ff)dei
) +o(n
‘ < o™+ [ ( 65, 02)das ) (B, )05 + o(n ™"
g < >+/ fss 1 25,100 )i Ol e oo™
; (s + 1)v2e 5
| (z:10: . a2)dz: Vi (0;1 ;. T2)dB;
‘ [ (Pt = sl = S s, o) O, 7210
| +1
i ([ Pt =l 2 © ’”}ﬁ( 65, 02)da: ) (B, 72) 6,
+o(n™")
(23+1)ve
< O(s‘l)+2e DI / > (3+1)u2¢h (0] i, 77 ) dO;
i"lh.__ 64'

+o(n™3) 4+ o(n1)




_(s+1)2vﬁ4€2
O(S_l) +e 2x642o'i'ri + O(n—l)
O(s™) + o(n™1). ' (62)

A

Similarly, we can obtain

[ Puslléi@) - eitadl > SHleilz) - mlfieds = o) +0). (63)

Combining (49), (54), (58), (59), (62) and (63), we finally obtain the rate of conver-
gence of the proposed selection procedure.

Theorem 1. The selection procedure d(x) defined in (26) is asymptoticaily optimal
with convergence rate of order o(1) + O(!%2). That is,

1

B(R(A™ () ~ R(@® () = o(.2) + O(" 25

)+0(=£2), (64)

5 Simulations

We carried out a simulation study to investigate the preformance of the selection pro-
cedure d™*)(x). The expected risk E(R(d™*)(x)) — R(d?(x))) is used as measure of the
performance of the selection rule.

We consider the following case in which & = 3, that is, we have 3 logistic populations
I1;, 11, and II3 and we would like to use the proposed selection procedure to select the
best population compared with a control.

The simulation scheme is described as follows:

(1) Foreach n, s and for each i = 1,2, 3, generate independent random variables X, . . .,
X;m as follows:

for [=1,...,n,
(a) first generate 6; from normal distribution with density N(u;, 72) (65)
(b) then generate X;; from logistic distribution L(6y, o;)

(2) Based on the past observations X;;;, and the present observations X = (X, ..., Xx),
we construct the empirical Bayes selection procedure d™*)(x) and compute the condi-
tional difference
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D = R((d™(x) ~ R(d®(x)))- (66)

(3) Repeat steps (1) and (2) 400 times. The average of the conditional differences on
the 400 repetitions which is denoted by D(n, s), is used as an estimator of the differences
ER((d™)(x) ~ R(d®(x))).

Tables (1) gives the simulation results on the performance of the proposed empirical
Bayes selection procedures. We choose 8y = 0.5, p; = 0.4, puy = 0.5, and p3 = 0.6,
TN =Ty = T3 = 1.

From these results, we see that D(n,s) decreases to zero very rapidly. It supports
Theorem 1 that the convergence rate is o(2) + O(*52).

Table 1

Performance of the selection rule

n D(n,s=1) D(n, s = 10) D(n, s = 50)

5 0.05132320 0.01647000 0.00560000
10 0.03145200 0.00653760 0.00218600
15 0.00636600 0.00367570 0.00079450
20 0.00389500 0.00293676 0.00010670
30 0.00278474 0.00089434 0.00008610
40 0.00283848 0.00008932 0.00004989
50 0.00019361 0.00023743 0.00003889
60 0.00056436 0.00010391 0.00004021
70 0.00023664 0.00009736 0.00002519
80 0.00035232 0.06272372 0.00001805
90 0.00636233 0.00211873 0.00001781
100 0.00036277 0.00012751 0.00001664
125 0.00326283 0.00032525 0.00001033
150 0.03272747 0.00003257 0.00000819
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Graph for Table 1 (when s = 1)
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Graph for Table 1 (when s = 10)
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Graph for Table 1 (when s = 50)
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